-
class sklearn.decomposition.NMF(n_components=None, init=None, solver='cd', tol=0.0001, max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1)
[source] -
Non-Negative Matrix Factorization (NMF)
Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction.
The objective function is:
123450.5
*
||X
-
WH||_Fro^
2
+
alpha
*
l1_ratio
*
||vec(W)||_1
+
alpha
*
l1_ratio
*
||vec(H)||_1
+
0.5
*
alpha
*
(
1
-
l1_ratio)
*
||W||_Fro^
2
+
0.5
*
alpha
*
(
1
-
l1_ratio)
*
||H||_Fro^
2
Where:
12||A||_Fro^
2
=
\sum_{i,j} A_{ij}^
2
(Frobenius norm)
||vec(A)||_1
=
\sum_{i,j}
abs
(A_{ij}) (Elementwise L1 norm)
The objective function is minimized with an alternating minimization of W and H.
Read more in the User Guide.
Parameters: n_components : int or None
Number of components, if n_components is not set all features are kept.
init : ?random? | ?nndsvd? | ?nndsvda? | ?nndsvdar? | ?custom?
Method used to initialize the procedure. Default: ?nndsvdar? if n_components < n_features, otherwise random. Valid options:
-
- ?random?: non-negative random matrices, scaled with:
-
sqrt(X.mean() / n_components)
-
- ?nndsvd?: Nonnegative Double Singular Value Decomposition (NNDSVD)
-
initialization (better for sparseness)
-
- ?nndsvda?: NNDSVD with zeros filled with the average of X
-
(better when sparsity is not desired)
-
- ?nndsvdar?: NNDSVD with zeros filled with small random values
-
(generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)
- ?custom?: use custom matrices W and H
solver : ?pg? | ?cd?
Numerical solver to use: ?pg? is a Projected Gradient solver (deprecated). ?cd? is a Coordinate Descent solver (recommended).
New in version 0.17: Coordinate Descent solver.
Changed in version 0.17: Deprecated Projected Gradient solver.
tol : double, default: 1e-4
Tolerance value used in stopping conditions.
max_iter : integer, default: 200
Number of iterations to compute.
random_state : integer seed, RandomState instance, or None (default)
Random number generator seed control.
alpha : double, default: 0.
Constant that multiplies the regularization terms. Set it to zero to have no regularization.
New in version 0.17: alpha used in the Coordinate Descent solver.
l1_ratio : double, default: 0.
The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent solver.
shuffle : boolean, default: False
If true, randomize the order of coordinates in the CD solver.
New in version 0.17: shuffle parameter used in the Coordinate Descent solver.
nls_max_iter : integer, default: 2000
Number of iterations in NLS subproblem. Used only in the deprecated ?pg? solver.
Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead.
sparseness : ?data? | ?components? | None, default: None
Where to enforce sparsity in the model. Used only in the deprecated ?pg? solver.
Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead.
beta : double, default: 1
Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Used only in the deprecated ?pg? solver.
Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead.
eta : double, default: 0.1
Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. Used only in the deprecated ?pg? solver.
Changed in version 0.17: Deprecated Projected Gradient solver. Use Coordinate Descent solver instead.
Attributes: components_ : array, [n_components, n_features]
Non-negative components of the data.
reconstruction_err_ : number
Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model.
|| X - WH ||_2
n_iter_ : int
Actual number of iterations.
References
C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/
Cichocki, Andrzej, and P. H. A. N. Anh-Huy. ?Fast local algorithms for large scale nonnegative matrix and tensor factorizations.? IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009.
Examples
12345678>>>
import
numpy as np
>>> X
=
np.array([[
1
,
1
], [
2
,
1
], [
3
,
1.2
], [
4
,
1
], [
5
,
0.8
], [
6
,
1
]])
>>>
from
sklearn.decomposition
import
NMF
>>> model
=
NMF(n_components
=
2
, init
=
'random'
, random_state
=
0
)
>>> model.fit(X)
NMF(alpha
=
0.0
, beta
=
1
, eta
=
0.1
, init
=
'random'
, l1_ratio
=
0.0
, max_iter
=
200
,
n_components
=
2
, nls_max_iter
=
2000
, random_state
=
0
, shuffle
=
False
,
solver
=
'cd'
, sparseness
=
None
, tol
=
0.0001
, verbose
=
0
)
12345>>> model.components_
array([[
2.09783018
,
0.30560234
],
[
2.13443044
,
2.13171694
]])
>>> model.reconstruction_err_
0.00115993
...
Methods
fit
(X[, y])Learn a NMF model for the data X. fit_transform
(X[, y, W, H])Learn a NMF model for the data X and returns the transformed data. get_params
([deep])Get parameters for this estimator. inverse_transform
(W)Transform data back to its original space. set_params
(\*\*params)Set the parameters of this estimator. transform
(X)Transform the data X according to the fitted NMF model -
__init__(n_components=None, init=None, solver='cd', tol=0.0001, max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False, nls_max_iter=2000, sparseness=None, beta=1, eta=0.1)
[source]
-
fit(X, y=None, **params)
[source] -
Learn a NMF model for the data X.
Parameters: X: {array-like, sparse matrix}, shape (n_samples, n_features) :
Data matrix to be decomposed
Returns: self :
-
fit_transform(X, y=None, W=None, H=None)
[source] -
Learn a NMF model for the data X and returns the transformed data.
This is more efficient than calling fit followed by transform.
Parameters: X: {array-like, sparse matrix}, shape (n_samples, n_features) :
Data matrix to be decomposed
W : array-like, shape (n_samples, n_components)
If init=?custom?, it is used as initial guess for the solution.
H : array-like, shape (n_components, n_features)
If init=?custom?, it is used as initial guess for the solution.
Returns: W: array, shape (n_samples, n_components) :
Transformed data.
-
get_params(deep=True)
[source] -
Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform(W)
[source] -
Transform data back to its original space.
Parameters: W: {array-like, sparse matrix}, shape (n_samples, n_components) :
Transformed data matrix
Returns: X: {array-like, sparse matrix}, shape (n_samples, n_features) :
Data matrix of original shape
.. versionadded:: 0.18 :
-
set_params(**params)
[source] -
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it?s possible to update each component of a nested object.Returns: self :
-
transform(X)
[source] -
Transform the data X according to the fitted NMF model
Parameters: X: {array-like, sparse matrix}, shape (n_samples, n_features) :
Data matrix to be transformed by the model
Returns: W: array, shape (n_samples, n_components) :
Transformed data
-
decomposition.NMF()
Examples using

2025-01-10 15:47:30
Please login to continue.