CLogLog.deriv()

statsmodels.genmod.families.links.CLogLog.deriv CLogLog.deriv(p) [source] Derivative of C-Log-Log transform link function Parameters: p : array-like Mean parameters Returns: g?(p) : array The derivative of the CLogLog transform link function Notes g?(p) = - 1 / (log(p) * p)

static OLSResults.pvalues()

statsmodels.regression.linear_model.OLSResults.pvalues static OLSResults.pvalues()

static RegressionResults.HC2_se()

statsmodels.regression.linear_model.RegressionResults.HC2_se static RegressionResults.HC2_se() [source] See statsmodels.RegressionResults

OLSResults.load()

statsmodels.regression.linear_model.OLSResults.load classmethod OLSResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

ARMAResults.summary2()

statsmodels.tsa.arima_model.ARMAResults.summary2 ARMAResults.summary2(title=None, alpha=0.05, float_format='%.4f') [source] Experimental summary function for ARIMA Results Parameters: title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string : print format for floats in parameters summary Returns: smry : Summary instance This holds the summary table and text,

ArmaFft.filter()

statsmodels.sandbox.tsa.fftarma.ArmaFft.filter ArmaFft.filter(x) [source] filter a timeseries with the ARMA filter padding with zero is missing, in example I needed the padding to get initial conditions identical to direct filter Initial filtered observations differ from filter2 and signal.lfilter, but at end they are the same. See also tsa.filters.fftconvolve

static CountResults.llnull()

statsmodels.discrete.discrete_model.CountResults.llnull static CountResults.llnull()

CompareMeans.ztest_ind()

statsmodels.stats.weightstats.CompareMeans.ztest_ind CompareMeans.ztest_ind(alternative='two-sided', usevar='pooled', value=0) [source] z-test for the null hypothesis of identical means Parameters: x1, x2 : array_like, 1-D or 2-D two independent samples, see notes for 2-D case alternative : string The alternative hypothesis, H1, has to be one of the following ?two-sided?: H1: difference in means not equal to value (default) ?larger? : H1: difference in means larger than value ?smaller? :

Transf_gen.moment()

statsmodels.sandbox.distributions.transformed.Transf_gen.moment Transf_gen.moment(n, *args, **kwds) n?th order non-central moment of distribution. Parameters: n : int, n>=1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). kwds : keyword arguments, optional These can include ?loc? and ?scale?, as well as other keyword arguments relevant for a given distribution.

static ProbitResults.llr_pvalue()

statsmodels.discrete.discrete_model.ProbitResults.llr_pvalue static ProbitResults.llr_pvalue()