BinaryResults.pred_table()

statsmodels.discrete.discrete_model.BinaryResults.pred_table BinaryResults.pred_table(threshold=0.5) [source] Prediction table Parameters: threshold : scalar Number between 0 and 1. Threshold above which a prediction is considered 1 and below which a prediction is considered 0. Notes pred_table[i,j] refers to the number of times ?i? was observed and the model predicted ?j?. Correct predictions are along the diagonal.

BinaryResults.remove_data()

statsmodels.discrete.discrete_model.BinaryResults.remove_data BinaryResults.remove_data() remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. Warning Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribu

BinaryResults.predict()

statsmodels.discrete.discrete_model.BinaryResults.predict BinaryResults.predict(exog=None, transform=True, *args, **kwargs) Call self.model.predict with self.params as the first argument. Parameters: exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data

BinaryResults.normalized_cov_params()

statsmodels.discrete.discrete_model.BinaryResults.normalized_cov_params BinaryResults.normalized_cov_params()

BinaryResults.load()

statsmodels.discrete.discrete_model.BinaryResults.load classmethod BinaryResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

BinaryResults.initialize()

statsmodels.discrete.discrete_model.BinaryResults.initialize BinaryResults.initialize(model, params, **kwd)

BinaryResults.get_margeff()

statsmodels.discrete.discrete_model.BinaryResults.get_margeff BinaryResults.get_margeff(at='overall', method='dydx', atexog=None, dummy=False, count=False) Get marginal effects of the fitted model. Parameters: at : str, optional Options are: ?overall?, The average of the marginal effects at each observation. ?mean?, The marginal effects at the mean of each regressor. ?median?, The marginal effects at the median of each regressor. ?zero?, The marginal effects at zero for each regressor. ?al

BinaryResults.f_test()

statsmodels.discrete.discrete_model.BinaryResults.f_test BinaryResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test

BinaryResults.cov_params()

statsmodels.discrete.discrete_model.BinaryResults.cov_params BinaryResults.cov_params(r_matrix=None, column=None, scale=None, cov_p=None, other=None) Returns the variance/covariance matrix. The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar. Parameters: r_matrix : array-like Can be 1d, or 2d. Can be used alone or with other. column : array-like

BinaryModel.score()

statsmodels.discrete.discrete_model.BinaryModel.score BinaryModel.score(params) Score vector of model. The gradient of logL with respect to each parameter.