ARResults.t_test()

statsmodels.tsa.ar_model.ARResults.t_test ARResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None) Compute a t-test for a each linear hypothesis of the form Rb = q Parameters: r_matrix : array-like, str, tuple array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tuple of arrays in the for

ARResults.save()

statsmodels.tsa.ar_model.ARResults.save ARResults.save(fname, remove_data=False) save a pickle of this instance Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. remove_data : bool If False (default), then the instance is pickled without changes. If True, then all arrays with length nobs are set to None before pickling. See the remove_data method. In some cases not all arrays will be set to None. Notes If remove_data is true and

ARResults.remove_data()

statsmodels.tsa.ar_model.ARResults.remove_data ARResults.remove_data() remove data arrays, all nobs arrays from result and model This reduces the size of the instance, so it can be pickled with less memory. Currently tested for use with predict from an unpickled results and model instance. Warning Since data and some intermediate results have been removed calculating new statistics that require them will raise exceptions. The exception will occur the first time an attribute is accessed that

ARResults.predict()

statsmodels.tsa.ar_model.ARResults.predict ARResults.predict(start=None, end=None, dynamic=False) [source] Returns in-sample and out-of-sample prediction. Parameters: start : int, str, or datetime Zero-indexed observation number at which to start forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. end : int, str, or datetime Zero-indexed observation number at which to end forecasting, ie., the first forecast is start. Can also be a date s

ARResults.normalized_cov_params()

statsmodels.tsa.ar_model.ARResults.normalized_cov_params ARResults.normalized_cov_params()

ARResults.f_test()

statsmodels.tsa.ar_model.ARResults.f_test ARResults.f_test(r_matrix, cov_p=None, scale=1.0, invcov=None) Compute the F-test for a joint linear hypothesis. This is a special case of wald_test that always uses the F distribution. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a s

ARResults.load()

statsmodels.tsa.ar_model.ARResults.load classmethod ARResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

ARResults.initialize()

statsmodels.tsa.ar_model.ARResults.initialize ARResults.initialize(model, params, **kwd)

ARResults.conf_int()

statsmodels.tsa.ar_model.ARResults.conf_int ARResults.conf_int(alpha=0.05, cols=None, method='default') Returns the confidence interval of the fitted parameters. Parameters: alpha : float, optional The significance level for the confidence interval. ie., The default alpha = .05 returns a 95% confidence interval. cols : array-like, optional cols specifies which confidence intervals to return method : string Not Implemented Yet Method to estimate the confidence_interval. ?Default? : uses

ARResults.cov_params()

statsmodels.tsa.ar_model.ARResults.cov_params ARResults.cov_params(r_matrix=None, column=None, scale=None, cov_p=None, other=None) Returns the variance/covariance matrix. The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar. Parameters: r_matrix : array-like Can be 1d, or 2d. Can be used alone or with other. column : array-like, optional Must be