Poisson.pdf()

statsmodels.discrete.discrete_model.Poisson.pdf Poisson.pdf(X) [source] Poisson model probability mass function Parameters: X : array-like X is the linear predictor of the model. See notes. Returns: pdf : ndarray The value of the Poisson probability mass function, PMF, for each point of X. Notes The PMF is defined as where assumes the loglinear model. I.e., The parameter X is in the above formula.

static ProbitResults.bse()

statsmodels.discrete.discrete_model.ProbitResults.bse static ProbitResults.bse()

BinaryModel.information()

statsmodels.discrete.discrete_model.BinaryModel.information BinaryModel.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

Transf_gen.std()

statsmodels.sandbox.distributions.transformed.Transf_gen.std Transf_gen.std(*args, **kwds) Standard deviation of the distribution. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns: std : float standard deviation of the distribution

graphics.gofplots.qqplot()

statsmodels.graphics.gofplots.qqplot statsmodels.graphics.gofplots.qqplot(data, dist=, distargs=(), a=0, loc=0, scale=1, fit=False, line=None, ax=None) [source] Q-Q plot of the quantiles of x versus the quantiles/ppf of a distribution. Can take arguments specifying the parameters for dist or fit them automatically. (See fit under Parameters.) Parameters: data : array-like 1d data array dist : A scipy.stats or statsmodels distribution Compare x against dist. The default is scipy.stats.dis

static BinaryResults.bse()

statsmodels.discrete.discrete_model.BinaryResults.bse static BinaryResults.bse()

PoissonOffsetGMLE.information()

statsmodels.miscmodels.count.PoissonOffsetGMLE.information PoissonOffsetGMLE.information(params) Fisher information matrix of model Returns -Hessian of loglike evaluated at params.

RegressionResults.compare_lr_test()

statsmodels.regression.linear_model.RegressionResults.compare_lr_test RegressionResults.compare_lr_test(restricted, large_sample=False) [source] Likelihood ratio test to test whether restricted model is correct Parameters: restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, ssr, residual degrees of freedom, df_resid. large_sample : bool Flag

static IVRegressionResults.cov_HC1()

statsmodels.sandbox.regression.gmm.IVRegressionResults.cov_HC1 static IVRegressionResults.cov_HC1() See statsmodels.RegressionResults

static GLMResults.resid_pearson()

statsmodels.genmod.generalized_linear_model.GLMResults.resid_pearson static GLMResults.resid_pearson() [source]