SkewNorm_gen.rvs()

statsmodels.sandbox.distributions.extras.SkewNorm_gen.rvs SkewNorm_gen.rvs(*args, **kwds) Random variates of given type. Parameters: arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). size : int or tuple of ints, optional Defining number of random variates (default=1). Returns: r

static OLSResults.rsquared()

statsmodels.regression.linear_model.OLSResults.rsquared static OLSResults.rsquared()

MixedLMResults.predict()

statsmodels.regression.mixed_linear_model.MixedLMResults.predict MixedLMResults.predict(exog=None, transform=True, *args, **kwargs) Call self.model.predict with self.params as the first argument. Parameters: exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass

NormalIndPower.plot_power()

statsmodels.stats.power.NormalIndPower.plot_power NormalIndPower.plot_power(dep_var='nobs', nobs=None, effect_size=None, alpha=0.05, ax=None, title=None, plt_kwds=None, **kwds) plot power with number of observations or effect size on x-axis Parameters: dep_var : string in [?nobs?, ?effect_size?, ?alpha?] This specifies which variable is used for the horizontal axis. If dep_var=?nobs? (default), then one curve is created for each value of effect_size. If dep_var=?effect_size? or alpha, then

CountResults.wald_test()

statsmodels.discrete.discrete_model.CountResults.wald_test CountResults.wald_test(r_matrix, cov_p=None, scale=1.0, invcov=None, use_f=None) Compute a Wald-test for a joint linear hypothesis. Parameters: r_matrix : array-like, str, or tuple array : An r x k array where r is the number of restrictions to test and k is the number of regressors. It is assumed that the linear combination is equal to zero. str : The full hypotheses to test can be given as a string. See the examples. tuple : A tu

MixedLMResults.load()

statsmodels.regression.mixed_linear_model.MixedLMResults.load classmethod MixedLMResults.load(fname) load a pickle, (class method) Parameters: fname : string or filehandle fname can be a string to a file path or filename, or a filehandle. Returns: unpickled instance :

static CountResults.prsquared()

statsmodels.discrete.discrete_model.CountResults.prsquared static CountResults.prsquared()

SimpleTable.extend()

statsmodels.iolib.table.SimpleTable.extend SimpleTable.extend() L.extend(iterable) ? extend list by appending elements from the iterable

genmod.cov_struct.Autoregressive()

statsmodels.genmod.cov_struct.Autoregressive class statsmodels.genmod.cov_struct.Autoregressive(dist_func=None) [source] An autoregressive working dependence structure. The dependence is defined in terms of the time component of the parent GEE class. Time represents a potentially multidimensional index from which distances between pairs of observations can be determined. The correlation between two observations in the same cluster is dep_params^distance, where dep_params is the autocorrelati

TTestPower.power()

statsmodels.stats.power.TTestPower.power TTestPower.power(effect_size, nobs, alpha, df=None, alternative='two-sided') [source] Calculate the power of a t-test for one sample or paired samples. Parameters: effect_size : float standardized effect size, mean divided by the standard deviation. effect size has to be positive. nobs : int or float sample size, number of observations. alpha : float in interval (0,1) significance level, e.g. 0.05, is the probability of a type I error, that is w