numpy.s_
  • References/Python/NumPy/Routines/Indexing routines

numpy.s_ = A nicer way to build up index tuples for arrays. Note

2025-01-10 15:47:30
ndarray.sort()
  • References/Python/NumPy/Routines/Sorting, searching, and counting

ndarray.sort(axis=-1, kind='quicksort', order=None) Sort an array, in-place.

2025-01-10 15:47:30
numpy.polynomial.legendre.legmul()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.legmul(c1, c2)

2025-01-10 15:47:30
numpy.nanmean()
  • References/Python/NumPy/Routines/Statistics

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)

2025-01-10 15:47:30
numpy.random.f()
  • References/Python/NumPy/Routines/Random sampling

numpy.random.f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution

2025-01-10 15:47:30
numpy.polynomial.legendre.leggrid2d()
  • References/Python/NumPy/Routines/Polynomials/Polynomial Package/Legendre Module

numpy.polynomial.legendre.leggrid2d(x, y, c)

2025-01-10 15:47:30
Binary operations
  • References/Python/NumPy/Routines

Elementwise bit operations

2025-01-10 15:47:30
numpy.nansum()
  • References/Python/NumPy/Routines/Mathematical functions

numpy.nansum(a, axis=None, dtype=None, out=None, keepdims=0)

2025-01-10 15:47:30
numpy.r_
  • References/Python/NumPy/Routines/Indexing routines

numpy.r_ = Translates slice objects to concatenation along the first axis. This is a simple way to build up arrays quickly. There

2025-01-10 15:47:30
numpy.testing.assert_string_equal()
  • References/Python/NumPy/Routines/Test Support

numpy.testing.assert_string_equal(actual, desired)

2025-01-10 15:47:30