tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type
tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') Generate n samples.
tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') Shape of a single sample from a single batch
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss')
tf.contrib.distributions.Multinomial.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes
tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.pmf(value, name='pmf') Probability mass function.
tf.contrib.distributions.MultivariateNormalFull.pmf(value, name='pmf') Probability mass function. Args:
tf.contrib.distributions.StudentT.parameters Dictionary of parameters used by this Distribution.
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean')
tf.contrib.distributions.Exponential.is_continuous
Page 17 of 100