tf.contrib.distributions.Chi2WithAbsDf.alpha
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Chi2WithAbsDf.alpha Shape parameter.

2025-01-10 15:47:30
tf.contrib.distributions.Mixture.param_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Mixture.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean(name='mean') Mean.

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.distribution
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.distribution

2025-01-10 15:47:30
tf.contrib.learn.monitors.CheckpointSaver.end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.CheckpointSaver.end(session=None)

2025-01-10 15:47:30
tf.contrib.learn.monitors.GraphDump.begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.GraphDump.begin(max_steps=None)

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats Python boolean describing behavior when a stat

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample(sample_shape=(), seed=None, name='sample') Generate samples

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_graph.surrogate_loss()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Graph

tf.contrib.bayesflow.stochastic_graph.surrogate_loss(sample_losses, stochastic_tensors=None, name='SurrogateLoss') Surrogate loss

2025-01-10 15:47:30
tf.contrib.distributions.Gamma.log_survival_function()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Gamma.log_survival_function(value, name='log_survival_function') Log survival function.

2025-01-10 15:47:30