tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end(step, outputs)

2025-01-10 15:47:30
tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous

2025-01-10 15:47:30
tf.as_string()
  • References/Big Data/TensorFlow/TensorFlow Python/Strings

tf.as_string(input, precision=None, scientific=None, shortest=None, width=None, fill=None, name=None) Converts each entry in the

2025-01-10 15:47:30
tf.contrib.distributions.WishartFull.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartFull.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value_type
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value_type

2025-01-10 15:47:30
tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.prob(value, name='prob') Probability density/mass function (depending

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalFull.mode()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalFull.mode(name='mode') Mode.

2025-01-10 15:47:30
tf.segment_min()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.segment_min(data, segment_ids, name=None) Computes the minimum along segments of a tensor. Read

2025-01-10 15:47:30
tf.contrib.losses.cosine_distance()
  • References/Big Data/TensorFlow/TensorFlow Python/Losses

tf.contrib.losses.cosine_distance(predictions, targets, dim, weight=1.0, scope=None) Adds a cosine-distance loss to the training

2025-01-10 15:47:30
tf.is_non_decreasing()
  • References/Big Data/TensorFlow/TensorFlow Python/Framework

tf.is_non_decreasing(x, name=None) Returns True if x is non-decreasing. Elements

2025-01-10 15:47:30