tf.contrib.distributions.Laplace.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Laplace.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='Laplace') Construct Laplace

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalCholesky.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalCholesky.is_continuous

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.loss()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.loss(final_loss, name='Loss')

2025-01-10 15:47:30
tf.contrib.distributions.Bernoulli
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

class tf.contrib.distributions.Bernoulli Bernoulli distribution. The Bernoulli distribution is

2025-01-10 15:47:30
tf.TFRecordReader.reset()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TFRecordReader.reset(name=None) Restore a reader to its initial clean state. Args:

2025-01-10 15:47:30
tf.contrib.learn.monitors.GraphDump.step_begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.GraphDump.step_begin(step)

2025-01-10 15:47:30
tf.SparseTensor.from_value()
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensor.from_value(cls, sparse_tensor_value)

2025-01-10 15:47:30
tf.contrib.training.SequenceQueueingStateSaver.barrier
  • References/Big Data/TensorFlow/TensorFlow Python/Training

tf.contrib.training.SequenceQueueingStateSaver.barrier

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.dtype
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.dtype

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.variance()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.variance(name='variance') Variance.

2025-01-10 15:47:30