tf.contrib.distributions.MultivariateNormalCholesky.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalCholesky.mean(name='mean') Mean.

2025-01-10 15:47:30
tf.contrib.distributions.StudentT.sigma
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.StudentT.sigma Scaling factors of these Student's t distribution(s).

2025-01-10 15:47:30
tf.contrib.distributions.Categorical.pmf()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Categorical.pmf(value, name='pmf') Probability mass function. Args:

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.__init__(mu, diag_stdev, validate_args=False, allow_nan_stats=True, name='MultivariateNormalD

2025-01-10 15:47:30
tf.contrib.distributions.LaplaceWithSoftplusScale.validate_args
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.LaplaceWithSoftplusScale.validate_args Python boolean indicated possibly expensive checks are enabled

2025-01-10 15:47:30
tf.contrib.distributions.ExponentialWithSoftplusLam.is_reparameterized
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.ExponentialWithSoftplusLam.is_reparameterized

2025-01-10 15:47:30
tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous

2025-01-10 15:47:30
tf.scan()
  • References/Big Data/TensorFlow/TensorFlow Python/Higher Order Functions

tf.scan(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, infer_shape=True, name=None) scan

2025-01-10 15:47:30
tf.contrib.graph_editor.transform_op_in_place()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.transform_op_in_place(info, op, detach_outputs=False) Transform a op in-place - experimental!

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.__init__()

2025-01-10 15:47:30