tf.contrib.distributions.Uniform
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

class tf.contrib.distributions.Uniform Uniform distribution with a and b parameters.

2025-01-10 15:47:30
tf.contrib.distributions.LaplaceWithSoftplusScale.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.LaplaceWithSoftplusScale.prob(value, name='prob') Probability density/mass function (depending on

2025-01-10 15:47:30
tf.contrib.distributions.Multinomial.log_survival_function()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Multinomial.log_survival_function(value, name='log_survival_function') Log survival function.

2025-01-10 15:47:30
tf.contrib.distributions.Dirichlet.log_prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Dirichlet.log_prob(value, name='log_prob') Log probability density/mass function (depending on

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes(cls, sample_shape) param_shapes with static

2025-01-10 15:47:30
tf.contrib.layers.separable_convolution2d()
  • References/Big Data/TensorFlow/TensorFlow Python/Layers

tf.contrib.layers.separable_convolution2d(*args, **kwargs) Adds a depth-separable 2D convolution with optional batch_norm layer

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNRegressor.fit()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNRegressor.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNRegressor.save()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNRegressor.save(path) Saves checkpoints and graph to given path. Args:

2025-01-10 15:47:30
tf.contrib.learn.monitors.EveryN
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

class tf.contrib.learn.monitors.EveryN Base class for monitors that execute callbacks every N steps. This

2025-01-10 15:47:30
tf.nn.rnn_cell.BasicLSTMCell.zero_state()
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.BasicLSTMCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2025-01-10 15:47:30