tf.contrib.distributions.BernoulliWithSigmoidP.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP')

2025-01-10 15:47:30
tf.contrib.distributions.Categorical.get_event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Categorical.get_event_shape() Shape of a single sample from a single batch as a TensorShape

2025-01-10 15:47:30
tf.contrib.framework.create_global_step()
  • References/Big Data/TensorFlow/TensorFlow Python/Framework

tf.contrib.framework.create_global_step(graph=None) Create global step tensor in graph. Args:

2025-01-10 15:47:30
tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mean(name='mean') Mean. Additional documentation

2025-01-10 15:47:30
tf.contrib.learn.LinearRegressor.dnn_weights_
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.LinearRegressor.dnn_weights_ Returns weights of deep neural network part.

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.is_continuous

2025-01-10 15:47:30
tf.contrib.learn.monitors.CheckpointSaver.post_step()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.CheckpointSaver.post_step(step, session)

2025-01-10 15:47:30
tf.contrib.learn.monitors.SummarySaver.run_on_all_workers
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.SummarySaver.run_on_all_workers

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') Construct Exponential

2025-01-10 15:47:30
tf.contrib.distributions.Bernoulli.sample()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Bernoulli.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape.

2025-01-10 15:47:30