tf.errors.FailedPreconditionError
  • References/Big Data/TensorFlow/TensorFlow Python/Running Graphs

class tf.errors.FailedPreconditionError Operation was rejected because the system is not in a state to execute it.

2025-01-10 15:47:30
tf.contrib.learn.monitors.SummarySaver.every_n_step_begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.SummarySaver.every_n_step_begin(step)

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution

2025-01-10 15:47:30
tf.test.compute_gradient()
  • References/Big Data/TensorFlow/TensorFlow Python/Testing

tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) Computes and returns the theoretical

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type)

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMStateTuple.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) Create new instance of LSTMStateTuple(c, h)

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.param_static_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') Construct Exponential

2025-01-10 15:47:30
tf.contrib.distributions.ExponentialWithSoftplusLam.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.ExponentialWithSoftplusLam.prob(value, name='prob') Probability density/mass function (depending on

2025-01-10 15:47:30
tf.string_join()
  • References/Big Data/TensorFlow/TensorFlow Python/Strings

tf.string_join(inputs, separator=None, name=None) Joins the strings in the given list of string tensors into one tensor;

2025-01-10 15:47:30