tf.contrib.learn.monitors.EveryN.every_n_step_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.EveryN.every_n_step_end(step, outputs) Callback after every n'th step finished. This

2025-01-10 15:47:30
tf.contrib.graph_editor.reroute_b2a_ts()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.reroute_b2a_ts(ts0, ts1, can_modify=None, cannot_modify=None) For each tensor's pair, replace the end

2025-01-10 15:47:30
tf.contrib.metrics.aggregate_metrics()
  • References/Big Data/TensorFlow/TensorFlow Python/Metrics

tf.contrib.metrics.aggregate_metrics(*value_update_tuples) Aggregates the metric value tensors and update ops into two lists.

2025-01-10 15:47:30
tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BernoulliWithSigmoidP.is_continuous

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowEstimator.evaluate()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None)

2025-01-10 15:47:30
tf.contrib.distributions.InverseGamma
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

class tf.contrib.distributions.InverseGamma The InverseGamma distribution with parameter alpha and beta.

2025-01-10 15:47:30
tf.contrib.distributions.DirichletMultinomial.cdf()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.DirichletMultinomial.cdf(value, name='cdf') Cumulative distribution function. Given

2025-01-10 15:47:30
tf.contrib.distributions.Normal.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Normal.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor

2025-01-10 15:47:30
tf.contrib.distributions.matrix_diag_transform()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.matrix_diag_transform(matrix, transform=None, name=None) Transform diagonal of [batch-]matrix, leave

2025-01-10 15:47:30
tf.contrib.distributions.ExponentialWithSoftplusLam.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.ExponentialWithSoftplusLam.event_shape(name='event_shape') Shape of a single sample from a single batch

2025-01-10 15:47:30