tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BernoulliWithSigmoidP.log_pdf(value, name='log_pdf') Log probability density function.

2025-01-10 15:47:30
tf.nn.rnn_cell.MultiRNNCell
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.MultiRNNCell RNN cell composed sequentially of multiple simple cells.

2025-01-10 15:47:30
tf.contrib.distributions.Mixture.survival_function()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Mixture.survival_function(value, name='survival_function') Survival function. Given

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.pdf(value, name='pdf') Probability density function.

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_graph.surrogate_loss()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Graph

tf.contrib.bayesflow.stochastic_graph.surrogate_loss(sample_losses, stochastic_tensors=None, name='SurrogateLoss') Surrogate loss

2025-01-10 15:47:30
tf.SparseTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensor.__init__(indices, values, shape) Creates a SparseTensor. Args:

2025-01-10 15:47:30
tf.contrib.graph_editor.SubGraphView.
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.SubGraphView.__init__(inside_ops=(), passthrough_ts=()) Create a subgraph containing the given ops and

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args)

2025-01-10 15:47:30
tf.minimum()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.minimum(x, y, name=None) Returns the min of x and y (i.e. x < y ? x : y) element-wise. NOTE:

2025-01-10 15:47:30
tf.contrib.distributions.TransformedDistribution.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.TransformedDistribution.event_shape(name='event_shape') Shape of a single sample from a single batch

2025-01-10 15:47:30