tf.contrib.metrics.streaming_recall_at_k()
  • References/Big Data/TensorFlow/TensorFlow Python/Metrics

tf.contrib.metrics.streaming_recall_at_k(*args, **kwargs) Computes the recall@k of the predictions with respect to dense labels

2025-01-10 15:47:30
tf.contrib.learn.monitors.CaptureVariable.every_n_step_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.CaptureVariable.every_n_step_end(step, outputs)

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMStateTuple
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.LSTMStateTuple Tuple used by LSTM Cells for state_size, zero_state, and output

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNClassifier.predict_proba()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNClassifier.predict_proba(x, batch_size=None) Predict class probability of the input samples x

2025-01-10 15:47:30
tf.contrib.distributions.LaplaceWithSoftplusScale.parameters
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.LaplaceWithSoftplusScale.parameters Dictionary of parameters used by this Distribution.

2025-01-10 15:47:30
tf.nn.rnn_cell.BasicRNNCell.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.BasicRNNCell.__init__(num_units, input_size=None, activation=tanh)

2025-01-10 15:47:30
Ops
  • References/Big Data/TensorFlow/TensorFlow Python/Metrics

Contents Metrics (contrib)Ops for evaluation metrics and summary statistics.API Metric Ops tf

2025-01-10 15:47:30
tf.SparseTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensor.__truediv__(sp_x, y) Internal helper function for 'sp_t / dense_t'.

2025-01-10 15:47:30
tf.contrib.distributions.WishartFull.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartFull.prob(value, name='prob') Probability density/mass function (depending on is_continuous)

2025-01-10 15:47:30
tf.assert_non_negative()
  • References/Big Data/TensorFlow/TensorFlow Python/Asserts and boolean checks.

tf.assert_non_negative(x, data=None, summarize=None, message=None, name=None) Assert the condition x >= 0 holds

2025-01-10 15:47:30