sklearn.preprocessing.normalize()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.normalize(X, norm='l2', axis=1, copy=True, return_norm=False)

2025-01-10 15:47:30
sklearn.datasets.make_classification()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2

2025-01-10 15:47:30
decomposition.FastICA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.FastICA(n_components=None, algorithm='parallel', whiten=True, fun='logcosh', fun_args=None, max_iter=200

2025-01-10 15:47:30
exceptions.DataDimensionalityWarning
  • References/Python/scikit-learn/API Reference/exceptions

class sklearn.exceptions.DataDimensionalityWarning

2025-01-10 15:47:30
gaussian_process.GaussianProcess()
  • References/Python/scikit-learn/API Reference/gaussian_process

Warning DEPRECATED

2025-01-10 15:47:30
sklearn.datasets.clear_data_home()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.clear_data_home(data_home=None)

2025-01-10 15:47:30
model_selection.ParameterSampler()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, random_state=None)

2025-01-10 15:47:30
gaussian_process.kernels.Kernel
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Kernel

2025-01-10 15:47:30
ensemble.AdaBoostRegressor()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)

2025-01-10 15:47:30
decomposition.FactorAnalysis()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.FactorAnalysis(n_components=None, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None, s

2025-01-10 15:47:30