sklearn.datasets.make_swiss_roll()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_swiss_roll(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.fetch_california_housing()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_california_housing(data_home=None, download_if_missing=True)

2025-01-10 15:47:30
model_selection.GroupKFold()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.GroupKFold(n_splits=3)

2025-01-10 15:47:30
neighbors.DistanceMetric
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.DistanceMetric DistanceMetric class This class provides a uniform interface to

2025-01-10 15:47:30
sklearn.metrics.pairwise.euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False, X_norm_squared=None)

2025-01-10 15:47:30
model_selection.ParameterSampler()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, random_state=None)

2025-01-10 15:47:30
sklearn.decomposition.dict_learning_online()
  • References/Python/scikit-learn/API Reference/decomposition

sklearn.decomposition.dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None,

2025-01-10 15:47:30
sklearn.metrics.silhouette_samples()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_samples(X, labels, metric='euclidean', **kwds)

2025-01-10 15:47:30
sklearn.metrics.pairwise.sigmoid_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.sigmoid_kernel(X, Y=None, gamma=None, coef0=1)

2025-01-10 15:47:30
covariance.EllipticEnvelope()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.EllipticEnvelope(store_precision=True, assume_centered=False, support_fraction=None, contamination=0.1

2025-01-10 15:47:30