linear_model.OrthogonalMatchingPursuit()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuit(n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True

2025-01-10 15:47:30
sklearn.manifold.spectral_embedding()
  • References/Python/scikit-learn/API Reference/manifold

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True

2025-01-10 15:47:30
sklearn.metrics.calinski_harabaz_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.calinski_harabaz_score(X, labels)

2025-01-10 15:47:30
ensemble.GradientBoostingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.GradientBoostingClassifier(loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0,

2025-01-10 15:47:30
ensemble.ExtraTreesClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
gaussian_process.kernels.PairwiseKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0, gamma_bounds=(1e-05, 100000.0), metric='linear',

2025-01-10 15:47:30
sklearn.cluster.ward_tree()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.ward_tree(X, connectivity=None, n_clusters=None, return_distance=False)

2025-01-10 15:47:30
sklearn.datasets.make_friedman2()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
neighbors.LSHForest()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.LSHForest(n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=0

2025-01-10 15:47:30
preprocessing.PolynomialFeatures()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, include_bias=True)

2025-01-10 15:47:30