linear_model.ElasticNet()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.ElasticNet(alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000

2025-01-10 15:47:30
linear_model.OrthogonalMatchingPursuitCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.OrthogonalMatchingPursuitCV(copy=True, fit_intercept=True, normalize=True, max_iter=None

2025-01-10 15:47:30
sklearn.manifold.spectral_embedding()
  • References/Python/scikit-learn/API Reference/manifold

sklearn.manifold.spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True

2025-01-10 15:47:30
sklearn.svm.libsvm.cross_validation()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.cross_validation() Binding of the cross-validation routine (low-level routine)

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.plot_partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2025-01-10 15:47:30
sklearn.cluster.k_means()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001

2025-01-10 15:47:30
neural_network.MLPClassifier()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto'

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_euclidean_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)

2025-01-10 15:47:30
gaussian_process.kernels.PairwiseKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0, gamma_bounds=(1e-05, 100000.0), metric='linear',

2025-01-10 15:47:30
sklearn.metrics.calinski_harabaz_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.calinski_harabaz_score(X, labels)

2025-01-10 15:47:30