model_selection.GroupShuffleSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.GroupShuffleSplit(n_splits=5, test_size=0.2, train_size=None, random_state=None)

2025-01-10 15:47:30
feature_selection.SelectFdr()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectFdr(score_func=, alpha=0.05)

2025-01-10 15:47:30
linear_model.TheilSenRegressor()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.TheilSenRegressor(fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,

2025-01-10 15:47:30
cluster.MeanShift()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.MeanShift(bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1)

2025-01-10 15:47:30
sklearn.neighbors.kneighbors_graph()
  • References/Python/scikit-learn/API Reference/neighbors

sklearn.neighbors.kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False

2025-01-10 15:47:30
sklearn.datasets.fetch_covtype()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_covtype(data_home=None, download_if_missing=True, random_state=None, shuffle=False)

2025-01-10 15:47:30
sklearn.metrics.median_absolute_error()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.median_absolute_error(y_true, y_pred)

2025-01-10 15:47:30
kernel_approximation.RBFSampler()
  • References/Python/scikit-learn/API Reference/kernel_approximation

class sklearn.kernel_approximation.RBFSampler(gamma=1.0, n_components=100, random_state=None)

2025-01-10 15:47:30
neighbors.KDTree
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KDTree KDTree for fast generalized N-point problems KDTree(X, leaf_size=40, metric=?minkowski

2025-01-10 15:47:30
sklearn.metrics.hamming_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hamming_loss(y_true, y_pred, labels=None, sample_weight=None, classes=None)

2025-01-10 15:47:30