sklearn.utils.shuffle()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.shuffle(*arrays, **options)

2025-01-10 15:47:30
sklearn.feature_selection.mutual_info_regression()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.mutual_info_regression(X, y, discrete_features='auto', n_neighbors=3, copy=True, ran

2025-01-10 15:47:30
sklearn.metrics.silhouette_samples()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_samples(X, labels, metric='euclidean', **kwds)

2025-01-10 15:47:30
sklearn.metrics.log_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None)

2025-01-10 15:47:30
decomposition.KernelPCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.KernelPCA(n_components=None, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1

2025-01-10 15:47:30
preprocessing.FunctionTransformer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.FunctionTransformer(func=None, inverse_func=None, validate=True, accept_sparse=False, pass_y=False

2025-01-10 15:47:30
sklearn.metrics.mutual_info_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)

2025-01-10 15:47:30
gaussian_process.kernels.Product()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Product(k1, k2)

2025-01-10 15:47:30
sklearn.datasets.make_s_curve()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_s_curve(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.utils.estimator_checks.check_estimator()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.estimator_checks.check_estimator(Estimator)

2025-01-10 15:47:30