sklearn.datasets.make_friedman3()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
pipeline.FeatureUnion()
  • References/Python/scikit-learn/API Reference/pipeline

class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None)

2025-01-10 15:47:30
model_selection.RandomizedSearchCV()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.RandomizedSearchCV(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None

2025-01-10 15:47:30
base.TransformerMixin
  • References/Python/scikit-learn/API Reference/base

class sklearn.base.TransformerMixin

2025-01-10 15:47:30
decomposition.ProjectedGradientNMF()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)

2025-01-10 15:47:30
sklearn.datasets.load_linnerud()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_linnerud(return_X_y=False)

2025-01-10 15:47:30
model_selection.PredefinedSplit()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.PredefinedSplit(test_fold)

2025-01-10 15:47:30
sklearn.metrics.pairwise.paired_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.paired_distances(X, Y, metric='euclidean', **kwds)

2025-01-10 15:47:30
linear_model.RidgeClassifierCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None

2025-01-10 15:47:30
feature_selection.GenericUnivariateSelect()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.GenericUnivariateSelect(score_func=, mode='percentile', param=1e-05)

2025-01-10 15:47:30