sklearn.utils.estimator_checks.check_estimator()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.estimator_checks.check_estimator(Estimator)

2025-01-10 15:47:30
sklearn.metrics.pairwise.polynomial_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1)

2025-01-10 15:47:30
sklearn.metrics.auc()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.auc(x, y, reorder=False)

2025-01-10 15:47:30
sklearn.model_selection.permutation_test_score()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.permutation_test_score(estimator, X, y, groups=None, cv=None, n_permutations=100, n_jobs=1

2025-01-10 15:47:30
preprocessing.MinMaxScaler()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)

2025-01-10 15:47:30
decomposition.ProjectedGradientNMF()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.ProjectedGradientNMF(*args, **kwargs)

2025-01-10 15:47:30
sklearn.svm.libsvm.fit()
  • References/Python/scikit-learn/API Reference/svm

sklearn.svm.libsvm.fit() Train the model using libsvm (low-level method)

2025-01-10 15:47:30
ensemble.RandomForestClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
sklearn.metrics.pairwise.pairwise_kernels()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric='linear', filter_params=False, n_jobs=1, **kwds)

2025-01-10 15:47:30
sklearn.datasets.fetch_rcv1()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_rcv1(data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False)

2025-01-10 15:47:30