sklearn.grid_search.fit_grid_point()
  • References/Python/scikit-learn/API Reference/grid_search

Warning DEPRECATED

2025-01-10 15:47:30
linear_model.LogisticRegressionCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegressionCV(Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None

2025-01-10 15:47:30
linear_model.LassoLarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None

2025-01-10 15:47:30
linear_model.Lars()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Lars(fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=2.2204460492503131e-16

2025-01-10 15:47:30
calibration.CalibratedClassifierCV()
  • References/Python/scikit-learn/API Reference/calibration

class sklearn.calibration.CalibratedClassifierCV(base_estimator=None, method='sigmoid', cv=3)

2025-01-10 15:47:30
gaussian_process.kernels.Hyperparameter
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.Hyperparameter

2025-01-10 15:47:30
sklearn.model_selection.learning_curve()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.learning_curve(estimator, X, y, groups=None, train_sizes=array([ 0.1, 0.33, 0.55, 0.78, 1. ]), cv=None

2025-01-10 15:47:30
sklearn.datasets.make_blobs()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)

2025-01-10 15:47:30
sklearn.datasets.load_files()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict'

2025-01-10 15:47:30
pipeline.FeatureUnion()
  • References/Python/scikit-learn/API Reference/pipeline

class sklearn.pipeline.FeatureUnion(transformer_list, n_jobs=1, transformer_weights=None)

2025-01-10 15:47:30