class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'
class sklearn.covariance.GraphLasso(alpha=0.01, mode='cd', tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, assume_centered=False)
sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)
class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0,
class sklearn.ensemble.RandomTreesEmbedding(n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0
class sklearn.linear_model.LassoLars(alpha=1.0, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500,
class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None
sklearn.datasets.make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)
class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
class sklearn.tree.ExtraTreeRegressor(criterion='mse', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1,
Page 26 of 43