sklearn.datasets.load_diabetes()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_diabetes(return_X_y=False)

2025-01-10 15:47:30
feature_selection.RFECV()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1)

2025-01-10 15:47:30
svm.LinearSVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
sklearn.utils.check_random_state()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.check_random_state(seed)

2025-01-10 15:47:30
cluster.MiniBatchKMeans()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True

2025-01-10 15:47:30
sklearn.feature_selection.f_regression()
  • References/Python/scikit-learn/API Reference/feature_selection

sklearn.feature_selection.f_regression(X, y, center=True)

2025-01-10 15:47:30
ensemble.BaggingClassifier()
  • References/Python/scikit-learn/API Reference/ensemble

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True

2025-01-10 15:47:30
cluster.AffinityPropagation()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'

2025-01-10 15:47:30
decomposition.LatentDirichletAllocation()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.LatentDirichletAllocation(n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method=None

2025-01-10 15:47:30
neighbors.KNeighborsRegressor()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30