neighbors.KNeighborsRegressor()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30
cluster.AffinityPropagation()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.AffinityPropagation(damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affinity='euclidean'

2025-01-10 15:47:30
sklearn.utils.check_random_state()
  • References/Python/scikit-learn/API Reference/utils

sklearn.utils.check_random_state(seed)

2025-01-10 15:47:30
sklearn.metrics.average_precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.average_precision_score(y_true, y_score, average='macro', sample_weight=None)

2025-01-10 15:47:30
linear_model.LinearRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)

2025-01-10 15:47:30
sklearn.metrics.pairwise.cosine_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.cosine_distances(X, Y=None)

2025-01-10 15:47:30
sklearn.datasets.load_diabetes()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_diabetes(return_X_y=False)

2025-01-10 15:47:30
sklearn.metrics.normalized_mutual_info_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred)

2025-01-10 15:47:30
cluster.MiniBatchKMeans()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True

2025-01-10 15:47:30
sklearn.datasets.load_breast_cancer()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.load_breast_cancer(return_X_y=False)

2025-01-10 15:47:30