linear_model.LogisticRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
svm.SVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None

2025-01-10 15:47:30
sklearn.metrics.jaccard_similarity_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)

2025-01-10 15:47:30
linear_model.LarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000

2025-01-10 15:47:30
svm.NuSVR()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False

2025-01-10 15:47:30
linear_model.Perceptron()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0,

2025-01-10 15:47:30
gaussian_process.kernels.ConstantKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
preprocessing.Normalizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.Normalizer(norm='l2', copy=True)

2025-01-10 15:47:30
sklearn.datasets.fetch_kddcup99()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_kddcup99(subset=None, shuffle=False, random_state=None, percent10=True, download_if_missing=True)

2025-01-10 15:47:30
feature_selection.RFECV()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1)

2025-01-10 15:47:30