class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1
class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None
sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)
class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000
class sklearn.svm.NuSVR(nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False
class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, eta0=1.0,
class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))
class sklearn.preprocessing.Normalizer(norm='l2', copy=True)
sklearn.datasets.fetch_kddcup99(subset=None, shuffle=False, random_state=None, percent10=True, download_if_missing=True)
class sklearn.feature_selection.RFECV(estimator, step=1, cv=None, scoring=None, verbose=0, n_jobs=1)
Page 34 of 43