cluster.SpectralClustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.SpectralClustering(n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0, affinity='rbf'

2025-01-10 15:47:30
svm.NuSVC()
  • References/Python/scikit-learn/API Reference/svm

class sklearn.svm.NuSVC(nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None

2025-01-10 15:47:30
feature_selection.VarianceThreshold()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.VarianceThreshold(threshold=0.0)

2025-01-10 15:47:30
sklearn.metrics.pairwise.cosine_similarity()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)

2025-01-10 15:47:30
tree.DecisionTreeRegressor()
  • References/Python/scikit-learn/API Reference/tree

class sklearn.tree.DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1

2025-01-10 15:47:30
cluster.Birch()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

2025-01-10 15:47:30
sklearn.datasets.make_friedman1()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None)

2025-01-10 15:47:30
linear_model.RidgeCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None

2025-01-10 15:47:30
manifold.MDS()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.MDS(n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001, n_jobs=1, random_state=None, dissimilar

2025-01-10 15:47:30
sklearn.metrics.adjusted_rand_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)

2025-01-10 15:47:30