cross_decomposition.PLSRegression()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSRegression(n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
manifold.Isomap()
  • References/Python/scikit-learn/API Reference/manifold

class sklearn.manifold.Isomap(n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'

2025-01-10 15:47:30
cluster.Birch()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

2025-01-10 15:47:30
sklearn.metrics.precision_recall_curve()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None)

2025-01-10 15:47:30
linear_model.LogisticRegression()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1

2025-01-10 15:47:30
gaussian_process.kernels.ConstantKernel()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))

2025-01-10 15:47:30
preprocessing.Normalizer()
  • References/Python/scikit-learn/API Reference/preprocessing

class sklearn.preprocessing.Normalizer(norm='l2', copy=True)

2025-01-10 15:47:30
sklearn.datasets.fetch_kddcup99()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_kddcup99(subset=None, shuffle=False, random_state=None, percent10=True, download_if_missing=True)

2025-01-10 15:47:30
sklearn.metrics.jaccard_similarity_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None)

2025-01-10 15:47:30
linear_model.LarsCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000

2025-01-10 15:47:30