tree.ExtraTreeRegressor()
  • References/Python/scikit-learn/API Reference/tree

class sklearn.tree.ExtraTreeRegressor(criterion='mse', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1,

2025-01-10 15:47:30
cross_decomposition.PLSCanonical()
  • References/Python/scikit-learn/API Reference/cross_decomposition

class sklearn.cross_decomposition.PLSCanonical(n_components=2, scale=True, algorithm='nipals', max_iter=500, tol=1e-06, copy=True)

2025-01-10 15:47:30
linear_model.RidgeCV()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None

2025-01-10 15:47:30
neural_network.BernoulliRBM()
  • References/Python/scikit-learn/API Reference/neural_network

class sklearn.neural_network.BernoulliRBM(n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None)

2025-01-10 15:47:30
covariance.MinCovDet()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.MinCovDet(store_precision=True, assume_centered=False, support_fraction=None, random_state=None)

2025-01-10 15:47:30
cluster.bicluster.SpectralCoclustering()
  • References/Python/scikit-learn/API Reference/cluster

class sklearn.cluster.bicluster.SpectralCoclustering(n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False

2025-01-10 15:47:30
sklearn.metrics.classification_report()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)

2025-01-10 15:47:30
sklearn.manifold.locally_linear_embedding()
  • References/Python/scikit-learn/API Reference/manifold

sklearn.manifold.locally_linear_embedding(X, n_neighbors, n_components, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100

2025-01-10 15:47:30
sklearn.metrics.precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)

2025-01-10 15:47:30
cross_validation.LabelKFold()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED

2025-01-10 15:47:30