kernel_approximation.AdditiveChi2Sampler()
  • References/Python/scikit-learn/API Reference/kernel_approximation

class sklearn.kernel_approximation.AdditiveChi2Sampler(sample_steps=2, sample_interval=None)

2025-01-10 15:47:30
sklearn.model_selection.permutation_test_score()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.permutation_test_score(estimator, X, y, groups=None, cv=None, n_permutations=100, n_jobs=1

2025-01-10 15:47:30
sklearn.metrics.explained_variance_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')

2025-01-10 15:47:30
sklearn.datasets.make_friedman3()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.manhattan_distances()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=500000000.0)

2025-01-10 15:47:30
covariance.LedoitWolf()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False, block_size=1000)

2025-01-10 15:47:30
sklearn.datasets.make_biclusters()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.polynomial_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1)

2025-01-10 15:47:30
sklearn.metrics.pairwise.additive_chi2_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None)

2025-01-10 15:47:30
neighbors.KNeighborsRegressor()
  • References/Python/scikit-learn/API Reference/neighbors

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski'

2025-01-10 15:47:30