model_selection.RandomizedSearchCV()
  • References/Python/scikit-learn/API Reference/model_selection

class sklearn.model_selection.RandomizedSearchCV(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None

2025-01-10 15:47:30
decomposition.SparsePCA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.SparsePCA(n_components=None, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08, method='lars', n_jobs=1

2025-01-10 15:47:30
linear_model.LassoLarsIC()
  • References/Python/scikit-learn/API Reference/linear_model

class sklearn.linear_model.LassoLarsIC(criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500

2025-01-10 15:47:30
gaussian_process.GaussianProcessRegressor()
  • References/Python/scikit-learn/API Reference/gaussian_process

class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0

2025-01-10 15:47:30
covariance.GraphLassoCV()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.GraphLassoCV(alphas=4, n_refinements=4, cv=None, tol=0.0001, enet_tol=0.0001, max_iter=100, mode='cd', n_jobs=1

2025-01-10 15:47:30
covariance.EmpiricalCovariance()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.EmpiricalCovariance(store_precision=True, assume_centered=False)

2025-01-10 15:47:30
cross_validation.KFold()
  • References/Python/scikit-learn/API Reference/cross_validation

Warning DEPRECATED class

2025-01-10 15:47:30
sklearn.model_selection.validation_curve()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.validation_curve(estimator, X, y, param_name, param_range, groups=None, cv=None, scoring=None,

2025-01-10 15:47:30
sklearn.datasets.fetch_20newsgroups_vectorized()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_20newsgroups_vectorized(subset='train', remove=(), data_home=None)

2025-01-10 15:47:30
mixture.BayesianGaussianMixture()
  • References/Python/scikit-learn/API Reference/mixture

class sklearn.mixture.BayesianGaussianMixture(n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100

2025-01-10 15:47:30